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Reduction of the sign problem using the meron-cluster approach

Sara Bergkvist,* Patrik Henelius, and Anders Rosengren
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The sign problem in quantum Monte Carlo calculations is analyzed using the meron-cluster solution. A
meron is a loop that alters the sign of the configuration, and the concept of merons can be used to solve the sign
problem for a limited class of models. Here we show that the method can be used toreducethe sign problem
in a wider class of models. We investigate how the meron solution evolves between a point in parameter space
where it eliminates the sign problem and a point where it does not affect the sign problem at all. In this
intermediate regime, the merons can be used to reduce the sign problem. The average sign still decreases
exponentially with system size and inverse temperature, but with a different prefactor. The sign exhibits the
slowest decrease in the vicinity of points where the meron-cluster solution eliminates the sign problem. We
have used stochastic series expansion quantum Monte Carlo combined with the concept of directed loops.
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I. INTRODUCTION

To stochastically study a quantum problem using a qu
tum Monte Carlo method, it is necessary to transform it t
form that is similar to a classical statistical problem. The s
problem appears when this transformation leads to a we
function that is not positive definite. As quantum Mon
Carlo methods have become increasingly efficient@1–6#,
there is a notable lack of progress in solving the sign pr
lem. The sign problem severely limits the number of mod
that can be studied using quantum Monte Carlo methods
in particular, there are only very few models of interacti
fermions in higher dimensions which are accessible to ex
ing algorithms@7#.

The recent development of the so-called meron-cluster
lution @8# has extended the range of models where the s
problem can be avoided. This method uses the propertie
loop quantum Monte Carlo algorithms to establish a one
one mapping between configurations with negative wei
and corresponding configurations with positive weig
These contributions cancel each other and a fraction of
phase space with a positive definite weight function is le
which can be sampled with no sign problem.

Unfortunately, the meron solution works for only a rath
limited class of models@9#. The main purpose of the prese
paper is to show that the meron concept can be applied
to models where the sign problem is not eliminated. We de
onstrate that in a wider class of models, it is possible
cancel out part of the negative configurations, and ther
reduce the sign problem. We investigate a model in an in
mediate regime between a point in parameter space w
the sign problem can be solved completely and a point wh
the meron-cluster algorithm cannot be applied. Our res
show that the meron-cluster algorithm does indeed red
the sign problem in this intermediate regime. The main fo
of the study is frustrated spin models, but we also apply
method to spinless fermions.

*Electronic address: sara@theophys.kth.se
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The outline of the paper is as follows. In Sec. II, th
Monte Carlo algorithm is briefly explained. The sign pro
lem and the meron-cluster algorithm are introduced in S
III. In Sec. IV, a modified version of the stochastic seri
expansion is described. The origin of the sign problem
frustrated spin systems and fermions is discussed in Se
In Sec. VI, we demonstrate how the meron solution affe
the average sign for a range of models where the sign p
lem cannot be eliminated. We conclude with a summary a
discussions in Sec. VII.

II. THE QUANTUM MONTE CARLO ALGORITHM

In order to explain the meron-cluster solution introduc
in Sec. IV, we give here a summary of the stochastic se
expansion~SSE! method@5,6,10#.

Consider a lattice model described by a HamiltonianH. In
the SSE method, the partition functionZ is Taylor expanded,

Z5(
a

(
m50

`
bm

m!
^au~2H !mua&, ~1!

whereua& are states in which the above matrix elements c
be calculated andb denotes the inverse temperature.

For the sake of clarity, we will now consider a on
dimensional ferromagnetic Heisenberg model,

H52(
i 51

N FSi
zSi 11

z 1
1

2
~Si

1Si 11
2 1Si

2Si 11
1 !G , ~2!

where N denotes the number of sites. The Hamiltonian
rewritten as a sum over diagonal and off-diagonal operat

2H5(
i 51

N

~H1,i1H2,i !, ~3!

where

H1,i5Si
zSi 11

z 1C ~4!
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and

H2,i5
1
2 ~Si

1Si 11
2 1Si

2Si 11
1 !, ~5!

whereC is a constant inserted to assure that the expecta
value ^auH1,i ua& is positive for all statesua&.

To simplify the Monte Carlo update we use an addition
unit operatorH0,051. Inserting the Hamiltonian Eq.~3! into
Eq. ~1!, and truncating the sum atm5L, we obtain

Z5(
a

(
SL

bn~L2n!!

L! K aU)
k51

L

Hak ,i kUaL , ~6!

wheren stands for the number of nonunit operators andSL
denotes a sequence of operator indices

SL5~a1 ,i 1!,~a2 ,i 2!, . . . ,~aL ,i L!, ~7!

with ak51,2 andi k51, . . . ,N, or (ak ,i k)5(0,0).
The Monte Carlo procedure must sample the space o

statesua&, and all sequencesSL . The simulation starts with
some random stateua& and an operator string containin
only unit operators. One Monte Carlo step consists of a
agonal and an off-diagonal update. In the diagonal upd
attempts are made to exchange unit and diagonal oper
sequentially at each position in the operator string. The pr
ability for inserting or deleting a diagonal operator in t
operator string is given by detailed balance@5#.

The off-diagonal update, also called loop update, is c
ried out with n fixed. Each bond operatorHi k

5H1,i k
1H2,i k

acts only on two spinsSi k
and Si k11. We can therefore re

write the matrix elements in Eq.~6! as a product ofn terms,
called vertices,

M ~a,SL!5)
k51

n

Wk , ~8!

where the vertex weightWp is defined as

Wp5^Si p

z ~p!Si p11
z ~p!uHi p

uSi p

z ~p21!,Si p11
z ~p21!&,

~9!

whereSi
z(p) denotes the state of spini in a propagated state

defined by

ua~p!&;)
k51

p

Hak ,i k
ua&. ~10!

A vertex thus consists of four spins, called the legs of
vertex, and an operator. Each term in the expansion in
~6! can be viewed as a sequence of vertices. An exampl
one term for a four-site chain is shown in the left part
Fig. 1.

The principles of the off-diagonal update are the follo
ing. One of then vertices is chosen at random and one of
four legs is randomly selected as the entrance leg. The
of the entrance leg is flipped. One of the legs of the opera
is chosen as the exit leg, and its state is also changed.
exit leg is chosen with a probability calculated from t
01612
n

l

ll

i-
e,
ors
b-

r-

e
q.
of
f

in
or
he

weight of the obtained vertex@5#. Thereafter, the vertex list is
sequentially searched for the next vertex that includes
exit spin. This spin becomes the entrance leg of the n
vertex and the procedure is continued until the original
trance leg is reached. During one Monte Carlo step, the l
update is repeated until, on an average, half of the vert
have been updated.

In the method described above, the spin states are alt
as the loop is constructed. During one Monte Carlo step
given spin can be part of several different loops, or it may
of none. In a few special cases, such as for the isotro
Heisenberg model, the propagation of each loop through
lattice is deterministic, meaning that there is only one p
sible exit leg for each entrance leg@5#. In these special cases
it is possible to divide the whole space-time lattice up in
loops so that each and every spin belongs to only one lo
An example of such a configuration is shown in the right p
of Fig. 1. The loop update can then be modified to identi
ing the unique loop structure and flipping each loop w
probability one half.

III. THE SIGN PROBLEM

In this section, we show how the sign problem appears
quantum Monte Carlo simulations, and introduce the rec
meron approach to solving the sign problem. We start
considering a general form of an expectation value that
be calculated by Monte Carlo methods,

^A&5

(
i

A~xi !W~xi !

(
i

W~xi !

5^A~x!&W , ~11!

where the weight functionsW(xi) andA(xi) depend on the
configurationxi . When the coordinatesxi are sampled ac-
cording to relative weight, the expectation value is given

FIG. 1. In the left part, one of the terms in the expansion in E
~6! is shown. The two different states of the basis, spin up a
down, are illustrated with circles and diamonds, and the opera
are depicted as horizontal bars. In the right part, the configuratio
divided into closed loops. The two loops in the configuration a
distinguished by different line styles.
2-2
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the average value ofA(x) as indicated in the last part of Eq
~11!. The sign problem appears if the weight function is n
positive definite. In this case, the sampling can be done u
the absolute value of the weight,

^A&5
^As& uWu

^s& uWu
, ~12!

wheres denotes the sign of the weight function and equ
61. However, in many cases of physical interest, the av
age sign approaches zero exponentially as the system s
increased. The above expectation value will then suffer fr
very large statistical fluctuations since it becomes a ratio
two small numbers. Let us now consider how negat
weight functions appear for quantum mechanical syste
The weight functionW(a,SL) corresponding to the partition
function given by Eq.~6! is

W~a,SL!5
bn~L2n!!

L! K aU)
k51

L

Hak ,i kUaL . ~13!

This is strictly positive, and for the ferromagnet there is
sign problem. Let us next consider an antiferromagnet
this case, the diagonal and off-diagonal operators are of
form

H1,b52Si (b)
z Sj (b)

z 1C ~14!

and

H2,b52 1
2 ~Si (b)

1 Sj (b)
2 1Si (b)

2 Sj (b)
1 !. ~15!

By adjusting the constantC, it is still possible to have
^auH1,bua&>0. However, for the off-diagonal operator, th
expectation valuêauH2,bua&<0, and the sign must be take
into account. If there is an odd number of off-diagonal o
erators in the configuration, the sign of the weight functi
will be negative. Due to the periodic boundary conditions
the imaginary time direction, the number of off-diagonal o
erators on a square lattice is always even and there is no
problem. However, if the system is frustrated, as on a tri
gular lattice, the sign problem appears for the antiferrom
netic spin model. For a fermionic system, the anticommu
tor rules must be taken into account and the sign of
configuration changes sign every time two fermion wo
lines wrap around each other in imaginary time. We theref
see that both for frustrated spin models and fermionic m
els, the sign problem enters into the loop update. Flippin
loop can cause the number of spin flipping operators
change parity, or it can cause two fermions to permute
thereby change the sign. Loops that cause the sign to ch
are called merons@8#, and in some cases one can, in effe
solve the sign problem by avoiding configurations that
clude merons.

In order to explain the meron solution, we need to rev
the loop update. As was pointed out at the end of the prec
ing section, it is sometimes possible to divide the lattice
into a unique loop structure. Expectation values can then
calculated using so-called improved estimators, which
averages over all possible loop configurations. If the num
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of loops in the system is given byNL , there are 2NL con-
figurations that can be reached by flipping the loops, since
the loops can be in two states. The expectation value in
~12! can therefore be rewritten as

^A&5
^^A~x!s~x!&& uWu

^^s~x!&& uWu
, ~16!

where the double expectation brackets denote an ave
over the different loop configurations

^^s~x!A~x!&& uWu5K 1

2NL
(
l 51

2NL

s~xl !A~xl !L
uWu

. ~17!

If certain criteria are fulfilled, the expectation value ca
be expressed as

^A&5^^A~x!dnM ,0&& uWu , ~18!

wherenM is the number of merons. Therefore, only config
rations without sign changing loops give nonzero contrib
tions to the expectation value, and the sign problem is
effect, solved.

Let us examine the necessary conditions for this to be
case.

~1! The lattice can be divided up into loops so that ea
spin belongs to one and only one loop.

~2! The weight must not change when the loops a
flipped.

~3! The loops must affect the sign independently.
~4! The zero-meron sector must be positive definite.
~5! The expectation value of the operator is unchang

when a loop is flipped.
Together, these conditions place severe restrictions

which models can be studied with the meron solution. O
aim is to examine if the conditions can be relaxed to all
for a more general algorithm. Of the five conditions, the l
one is the least severe. Many operators for which this con
tion does not hold can be expressed by introducing the t
meron sector@8,11#. Examples of operators for which the la
condition holds are the energy and heat capacity, which
SSE are given by

E52
^n&
b

, ~19!

C5^n2&2^n&22^n&. ~20!

wheren is the number of nonunit operators in the opera
string.

The first three conditions are severe and we are not aw
of a way to relax these restrictions. In this study, we exam
the case when the fourth condition is not met, and the ze
meron sector is not positive definite. If this is not the ca
Eq. ~18! must be replaced by

^A&5
^^A~x!s~x!dnM ,0&& uWu

^^s~x!dnM ,0&& uWu
, ~21!
2-3
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wheres(x) is the sign of the configuration in the zero-mer
sector. The higher meron sectors do not contribute to
average and the sign problem is therefore reduced, but
eliminated. To find out how the average sign changes
leaving out the nonzero meron sectors is the aim of
investigation. It is not clear whether the exponential char
ter of the sign problem will change, or how the system s
will affect the average sign. This depends on the relat
weight of the different meron sectors and on the average
in the zero-meron sector.

In order to investigate systems where the fourth condit
does not hold, it is necessary to satisfy the first three crite
As was stated at the end of Sec. II, there are a few spe
cases where a unique loop structure exists, and in these c
the first condition is automatically satisfied. For more gene
models, where one can choose between different exit l
this is not true, since there no longer exists auniqueway to
divide the lattice into loops. It is, however, possible to cov
the lattice with loops so that each spin belongs to one
only one loop. This can be done by always choosing an
leg that is not already a part of any loop. Since a unique lo
structure does not exist, one also has to sample all pos
loop configurations, and in order to implement the mer
solution efficiently, this has to be done without leaving t
zero and two-meron sectors. We have implemented a l
update that inherently divides the lattice into separate loo
This can be done as long as the bounce process, wher
entrance and exit legs coincide, can be neglected. With
advent of directed loops@6#, now there exists a way to elimi
nate the bounce process in many models of interest. In
following section, we will introduce the idea of directe
loops and introduce models where the first three, but not
fourth, conditions are satisfied.

IV. SSE LOOP CONSTRUCTION

Following Ref. @6#, we here derive the directed loop
equations that enable us to neglect the bounce process
explicitly show that the weight in the extended space of
rected loops is unaltered when a loop is flipped. Then,
will describe a modification to the SSE loop update, a
demonstrate how the meron approach can be efficie
implemented also for models where there is not a uni
way of dividing the lattice into loops.

By considering that each possible loop has a ‘‘tim
reversed’’ counterpart, it was shown@6# that a loop move
satisfies detailed balance if, for every vertex that the lo
passes through,

WsP~s,i→ j !5Ws8P~s8, j→ i !, ~22!

where the vertex weightWs for a given spin configurations
is defined by Eq.~9! and P(s,i→ j ) is the probability to
choose exit legj given entrance legi for a given spin con-
figurations.

The main idea of the method of directed loops is to atta
weight also to the link that connects the entrance and
spins at a traversed vertex. The weight of a vertex in t
extended space can then be written asW(s,i , j ). We are al-
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auxiliary variables reduces to the original weight:

(
j

W~s,i , j !5Ws . ~23!

We furthermore require that the weight in this extend
space is not affected by flipping a loop, which translates

W~s,i , j !5W~s8, j ,i !. ~24!

Considering the criteria for detailed balance, Eq.~22!, we
can now relate the weights in the original and extended sp
as

W~s,e,x!5WsP~s,e,x!. ~25!

We have therefore shown that the total weight in our e
tended configuration space is unchanged when flippin
loop, and the second condition for using the meron solut
is therefore fulfilled. The method of directed loops is a w
to assign probabilities to the different possible exit legs giv
an entrance leg. The probabilities are determined by solv
the system of equations that Eqs.~22! and~24! generate. We
want to emphasis that for many models, it is possible
solve the equations so that the bounce process is forbid
@6#, and as we now show, this makes it possible to divide
the lattice into separate loops.

Next we describe a procedure that enables us to make
division. In our update, the physical structure of the loops
determined and updated during the diagonal move, w
each loop is flipped with probability one half in the of
diagonal update. The diagonal move is quite different fro
the one described in Sec. II, and here we describe it in so
detail.

The operator string is, as before, updated sequentially,
if a unit operator is encountered, an attempt to insert a d
onal operator is made. If an operator is inserted, its four l
are linked to the existing loops. If the bounce is eliminate
there are three possible ways to link the entrance and
legs of a vertex, see Fig. 2. The decision of which config
ration to use is based on detailed balance equations, w
states that the probability of different vertices is proportion
to their weight given by Eq.~9!. It is enough to treat an
arbitrary leg as ‘‘entrance leg’’ to the vertex and determine
exit leg. With two legs connected together in this manner,
other two legs are also automatically linked. If instead
diagonal operator is encountered, an attempt is made to

FIG. 2. The three different ways the legs of a vertex can
paired together, if the bounce process is neglected, are marke
lettersA, B, andC. The fourth vertex shows one example of th
many possible ways to connect the legs if the bounce is allowe
2-4
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REDUCTION OF THE SIGN PROBLEM USING THE . . . PHYSICAL REVIEW E 68, 016122 ~2003!
change it for a unit operator, as in the standard diago
update. If the removal is not accepted, an attempt is mad
alter the way in which the legs are connected. In the sa
way as when inserting a new diagonal operator, an ‘‘exit le
is determined for an arbitrary ‘‘entrance leg,’’ a procedu
which may change the existing links. This change of lo
structure is also done if an off-diagonal operator is enco
tered. We graphically demonstrate this modified update
Fig. 3. On the left side of Fig. 3, a term in the SSE expans
is divided into loops. A possible outcome after a diago
update is shown on the right. In the following section we w
apply this update to models that suffer from the sign pr
lem.

V. MODELS

A. Frustrated spin

The main focus of this paper is frustrated spin syste
The HamiltonianH is given by

H5(
i , j

DSi
zSj

z1
1

2
~Si

1Sj
21Sj

1Si
2!, ~26!

where the sum runs over all nearest neighbors. ForD
P$21,1%, the directed loops equations can be solved so
the bounce is eliminated, and using the method describe
the preceding section, the first two criteria for using t
meron solution are fulfilled. The frustration is introduced
having spins positioned on a triangular lattice. The o
diagonal coupling is antiferromagnetic and as described
viously the number of off-diagonal operators may be odd
a frustrated lattice and there is therefore a sign problem
Fig. 4, an example of such a configuration with an odd nu
ber of off-diagonal operators is shown. The third criteri
states that the loops need to be independent in their effec
the sign. If flipping a loop causes the total number of o

FIG. 3. A example of a SSE configuration divided up into se
rate loops is depicted on the left side. In the right part of the figu
a possible outcome after a sequential diagonal update is shown
operator has been inserted and the way the legs are connecte
been changed for two of the vertices. These operators are ma
with a thick bar.
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diagonal operators to change the parity, the sign changes
the loop is a meron. The only way this can happen is if
loop traverses an odd number of vertices. The numbe
transversed vertices is independent of any other loops an
is therefore clear that the loops are independent in their ef
on the sign, which establishes the third criterion. We ha
therefore shown that the first three criteria for the applicat
of the meron solution are fulfilled.

The fourth criterion requires that the zero-meron sec
has a positive definite weight. This is not, in general, true
this model. The configuration shown in Fig. 4 has negat
weight, yet the only loop in the system is not a meron. T
only point where the fourth criterion holds true is forD5
21, a point in parameter space which has been extensi
studied@11#. At this point, it is possible to exclude all but on
update, updateC in Fig. 2. As we move away fromD5
21, the negative part of the zero-meron sector grows. At
other extreme,D51, it is not possible to eliminate the
bounces without introducing a nonergodicity. If the bounce
eliminated, the only allowed update is updateA in Fig. 2.
With only this update, there are no loops which pass throu
an odd number of operators, and thus there are no mer
Still the zero-meron sector, the only sector left, contains b
positive and negative parts, but there is no way to swi
between them, and therefore the whole SSE space is
sampled. For all other values,DP$21,1%, the meron solu-
tion can be applied, and this model constitutes an ideal t
ing ground for a further study of the meron solution since,
adjusting a single parameter, we can move from a po
where the meron solution eliminates the sign problem (D5
21) to a point where the loop update becomes nonergo
(D511). However, since much effort has been made
solve the sign problem in fermion models, we will next d
scribe the application to a system of spinless fermions.

B. Spinless fermions

Besides the frustrated spin systems, we have also stu
spinless fermions on a square lattice. In this context, a me
is a loop which permutes an even number of fermions wh
it is flipped. The loops must affect the sign independently
each other for the meron method to work, as stated by

-
,
ne
has
ed

FIG. 4. A three-spin configuration with negative weight but
merons. The diamonds~circles! represent spin up~down!.
2-5
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BERGKVIST, HENELIUS, AND ROSENGREN PHYSICAL REVIEW E68, 016122 ~2003!
third constraint described in Sec. III. For the frustrated s
models described above, this was always the case, but
not so for fermionic models. As discussed previously, th
are three different ways to traverse a vertex; see Fig. 2.
fermions, updateC makes the loops dependent on each ot
@9#. To solve this problem, one can give the complet
empty vertex a negative weight, but in this case updatB
causes the loops to be dependent. We are not aware of a
to solve this dependency problem and one is thus restri
to models where one of the two updatesB and C can be
forbidden.

In the work by Chandrasekharanet al @9#, two models are
given where only one type of vertex update is allowed a
the zero-meron sector, therefore, is positive. We have stu
a model where it is possible to exclude updateB and the
bounce, but both updateA and C must be allowed. The
Hamiltonian for this model is

H5(
i , j

ci
1cj

21cj
1ci

21
4

3
~ni21/2!~nj21/2!2

1

3
~ni1nj !,

~27!

where ni is the occupation on sitei and ci
2 (ci

1) are the
ordinary annihilation~creation! fermion operators. By adjust
ing the constant,C added to the diagonal operator, the emp
vertex is given a negative weight and the loops are indep
dent of each other. Therefore we have a fermionic exam
of a model where the first three criteria for using the me
solution are fulfilled, but the zero-meron sector is not po
tive definite. In the following section, we analyze how t
meron solution affects the average sign in these cases w
the zero-meron sector is not positive definite.

VI. RESULTS

First we consider the spin model described by Eq.~26!.
We have calculated the expectation value of the sign

FIG. 5. The average sign for different values ofD for the frus-
trated spin model. The averages are calculated for the zero-m
sector~diamonds! and include the two-meron sector~circles!.
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frustrated spin models with different values of the const
D. The expectation value for a three-site system is shown
a function of temperature in Fig. 5. The simulation is pe
formed in the zero and two-meron sectors, and expecta
values are shown both including and excluding the tw
meron sector. As can be seen in the figure, the sign decre
exponentially in both cases. Asymptotically, it appears t
the sign in the zero-meron sector is increased by a cons
factor as compared to the case of including the two-me
sector. The average sign is greatest close to the pointD5
21, where the sign problem is eliminated, and it decrea
as the pointD51 is approached. This is to be expected sin
the meron-cluster solution cannot be applied in the pres
form at the Heisenberg point (D51).

We have also calculated how the expectation value of
sign changes with the system size. The results are show
Fig. 6. In this calculation,D520.9 is used. The averag
sign appears to decrease approximately exponentially
with system size.

on

FIG. 6. The average sign for different system sizes calcula
for D520.9. The averages are calculated for the zero-meron se
~diamonds! and include the two-meron sector~circles!.

FIG. 7. The weight distribution between the sectors with diffe
ent numbers of merons at different temperatures for a system
ten spins. The points above~below! the line in the figure correspond
to a positive~negative! sign.
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REDUCTION OF THE SIGN PROBLEM USING THE . . . PHYSICAL REVIEW E 68, 016122 ~2003!
Besides the two already mentioned expectation value
the sign, we have also calculated the expectation value o
sign without the use of merons. This value is slightly sma
than the one for the two-meron sector. The difference
small since the sector with two merons has a very m
larger weight than the sectors with more than two merons
least for the temperatures and system sizes that we have
ied. In Fig. 7, we show the relative weight for the zer
meron, the two-meron sector, and the sectors with more
two merons, calculated for a system with ten spins at dif
ent temperatures. The weight of the sectors with more t
two merons increases with a decreased temperature as a
sequence of a larger configuration which results in a lar
number of loops. In the figure, we also indicate the relat
between the number of positive and negative values in
different sectors. For the sectors with merons, there is,
definition, an equal amount of positive and negative valu
As can be expected from Fig. 5, the ratio of positive to ne
tive weight in the zero-meron sector approaches one as
temperature decreases. We also note that the relative w
of the zero-meron sector decreases quite rapidly with lo
temperatures. There is no sector with an odd numbe
merons. If there were such a sector, configurations wo
exist in which a flip of all the loops would result in a sig
change. A flip of all the loops corresponds to a change of
spin states, an operation which does not change the num
of off-diagonal operators.

We have also done a similar calculation for the spinl
fermion model given by Eq.~27!. The result for the expec
tation value of the sign is shown in Fig. 8 as a function
temperature. Two different system sizes are studied,
times two and four times four sites. Also here the avera
sign appears to decrease exponentially with inverse temp
ture and system size both in the zero- and in the two-me
sectors. Asymptotically, it seems that the average sign in
zero-meron sector again is increased by a constant fa
when leaving out the higher-meron sectors.

FIG. 8. The average sign as a function of the temperature for
fermion model. The averages are calculated for the zero-meron
tor ~diamonds! and include the one- and two-meron secto
~circles!.
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We have studied the relative weight of the sectors w
different number of merons also for the fermionic syste
For the fermions, there are configurations with only o
meron. This is due to the fact that the empty vertex is giv
a negative weight, and flipping all the loops in a configu
tion may change the parity of the number of empty vertic
A comparison with exact diagonalization indicates that o
only needs to include either the one-meron or the two-me
sectors in addition to the zero-meron sector. In Fig. 9,
relative weight for the zero-, one-, two-, and higher-mero
sectors are presented. At high temperatures, the rela
weight of the zero-meron sector again dominates, while
lower temperatures the weight in the higher-meron sec
increases.

VII. SUMMARY AND DISCUSSION

We have shown that as long as it is possible to divide
system into independent loops, the meron-cluster appro
can be used to decrease the sign problem even when
zero-meron sector is not positive definite. We have app
this method to both frustrated spin systems and spinless
mions. An intermediate regime, between a point in param
space where the meron-cluster algorithm eliminates the
problem and a point where it cannot be applied, is studied
this intermediate regime the exponential character of the s
problem persists, but one can increase the average sign
constant factor by limiting measurements to the zero-me
sector. The method is probably of most practical use in
vicinity of points where the sign problem can be eliminat
using the meron solution. In a large scale application,
weight of the two-meron sector should be decreased b
reweighting technique@8,11# to obtain better statistics. To b
able to use this algorithm, we have combined stochastic
ries expansion with the concept of directed loops.
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FIG. 9. The weight distribution between the sectors with diffe
ent number of merons at different temperatures for a system with
sites is presented. The points above~below! the line in the figure
correspond to a positive~negative! sign.
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