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Reduction of the sign problem using the meron-cluster approach
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The sign problem in quantum Monte Carlo calculations is analyzed using the meron-cluster solution. A
meron is a loop that alters the sign of the configuration, and the concept of merons can be used to solve the sign
problem for a limited class of models. Here we show that the method can be usstlitethe sign problem
in a wider class of models. We investigate how the meron solution evolves between a point in parameter space
where it eliminates the sign problem and a point where it does not affect the sign problem at all. In this
intermediate regime, the merons can be used to reduce the sign problem. The average sign still decreases
exponentially with system size and inverse temperature, but with a different prefactor. The sign exhibits the
slowest decrease in the vicinity of points where the meron-cluster solution eliminates the sign problem. We
have used stochastic series expansion quantum Monte Carlo combined with the concept of directed loops.
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[. INTRODUCTION The outline of the paper is as follows. In Sec. I, the
Monte Carlo algorithm is briefly explained. The sign prob-
To stochastically study a quantum problem using a quanlem and the meron-cluster algorithm are introduced in Sec.
tum Monte Carlo method, it is necessary to transform it to dll. In Sec. IV, a modified version of the stochastic series
form that is similar to a classical statistical problem. The sigréxpansion is described. The origin of the sign problem for
problem appears when this transformation leads to a weigHtustrated spin systems and fermions is discussed in Sec. V.
function that is not positive definite. As quantum Monte In Sec. VI, we demonstrate how the meron solution affects
Carlo methods have become increasingly efficight6], the average sign for a range of models where the sign prob-
there is a notable lack of progress in solving the sign problem cannot be eliminated. We conclude with a summary and
lem. The sign problem severely limits the number of modelgliscussions in Sec. VII.
that can be studied using quantum Monte Carlo methods and,

in particular, there are only very few models of interacting  Il. THE QUANTUM MONTE CARLO ALGORITHM
fermions in higher dimensions which are accessible to exist- _ .
ing algorithms[7]. In order to explain the meron-cluster solution introduced

The recent development of the so-called meron-cluster sd? S€C- IV, we give here a summary of the stochastic series

lution [8] has extended the range of models where the sigffXPansionSSB method[5,6,10. o

problem can be avoided. This method uses the properties of Consider a lattice model described by a Hamiltortiaiin

loop quantum Monte Carlo algorithms to establish a one-toth® SSE method, the partition functidnis Taylor expanded,

one mapping between configurations with negative weight = gm

and corresponding configurations with positive weight. _ P _ym

These contributions cancel each other and a fraction of the Z_g Z m! {al(=H)"a), @

phase space with a positive definite weight function is left,

which can be sampled with no sign problem. where|«) are states in which the above matrix elements can
Unfortunately, the meron solution works for only a ratherbe calculated an@ denotes the inverse temperature.

limited class of model§9]. The main purpose of the present  For the sake of clarity, we will now consider a one-

paper is to show that the meron concept can be applied alstimensional ferromagnetic Heisenberg model,

to models where the sign problem is not eliminated. We dem-

onstrate that in a wider class of models, it is possible to N 1

cancel out part of the negative configurations, and thereby H= —Z St E(S.+S*|—+1+S|_3++1) : 2

reduce the sign problem. We investigate a model in an inter- =t

mediate regime between a point in parameter space WheWhereN denotes the number of sites. The Hamiltonian is

the sign problem can be_solved completely af‘d a point Wher?ewritten as a sum over diagonal and off-diagonal operators
the meron-cluster algorithm cannot be applied. Our results '

show that the meron-cluster algorithm does indeed reduce N
the sign problem in this intermediate regime. The main focus —H=> (Hy;+H>), ®)
of the study is frustrated spin models, but we also apply this i=1 ' ’

method to spinless fermions.
where

*Electronic address: sara@theophys.kth.se Hyi= S.ZSZ+ 1+C 4
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and
Hpi=3(S'S51+S S5, 5

whereC is a constant inserted to assure that the expectation
value(a|Hy;| @) is positive for all statesa).

To simplify the Monte Carlo update we use an additional
unit operatorH, o= 1. Inserting the Hamiltonian E@3) into
Eq. (1), and truncating the sum at=L, we obtain

a> : (6)

wheren stands for the number of nonunit operators &d

L

H Hak,ik

k=1

n(L—n)!
-3 E(L—'“)<a

a S
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denotes a sequence of operator indices | Pl

SL:(alvil)i(a21i2)7 ---1(aL1iL)r (7)
(6) is shown. The two different states of the basis, spin up and
with a,=1,2 andi,=1, ... N, or (ay,ix) =(0,0). down, are illustrated with circles and diamonds, and the operators
The Monte Carlo procedure must sample the space of alire depicted as horizontal bars. In the right part, the configuration is
stateg ), and all sequences, . The simulation starts with  divided into closed loops. The two loops in the configuration are
some random statew) and an operator string containing distinguished by different line styles.
only unit operators. One Monte Carlo step consists of a di- ) o
agonal and an off-diagonal update. In the diagonal updaté/yelght o_f the obtained vertd%]. Thereafter, the ve_rtex listis
attempts are made to exchange unit and diagonal operatof§duentially searched for the next vertex that includes the
sequentially at each position in the operator string. The prob€Xit spin. This spin becomes the entrance leg of the next
operator string is given by detailed balarf&. trance Igg is reached. D_urlng one Monte Carlo step, the Ipop
The off-diagonal update, also called loop update, is carupdate is repeated until, on an average, half of the vertices
fied out withn fixed. Each bond operatdt;, =Ha;, + Hz;, ha\Ilr(? tzieggtﬂ?)ztzcéscribed above, the spin states are altered
ac_ts only on t_WO splnSk ?ndSk*l' We can therefore re- as the loop is constructed. During one Monte Carlo step, a
write the matrix elements in E¢6) as a product oh terms,  given spin can be part of several different loops, or it may be
called vertices, of none. In a few special cases, such as for the isotropic
n Heisenberg model, the propagation of each loop through the
_ lattice is deterministic, meaning that there is only one pos-
MleS) l<1;[1 Wi ® sible exit leg for each entrance I€g]. In these special cases,
it is possible to divide the whole space-time lattice up into
loops so that each and every spin belongs to only one loop.
An example of such a configuration is shown in the right part
of Fig. 1. The loop update can then be modified to identify-
9 ing the unique loop structure and flipping each loop with
probability one half.

FIG. 1. In the left part, one of the terms in the expansion in Eq.

where the vertex weightv, is defined as

Wo=(S (P)S 1(P)IH; IS (P~ 1).§ L 1(p— 1)),

whereS/(p) denotes the state of spirin a propagated state,

defined by lll. THE SIGN PROBLEM

In this section, we show how the sign problem appears in
quantum Monte Carlo simulations, and introduce the recent
meron approach to solving the sign problem. We start by
A vertex thus consists of four spins, called the legs of theconsidering a general form of an expectation value that can
vertex, and an operator. Each term in the expansion in EJP€ calculated by Monte Carlo methods,

(6) can be viewed as a sequence of vertices. An example of

p
la(p)~ 11 Ha i) (10)
k=1

one term for a four-site chain is shown in the left part of > A)W(X;)
Fig. 1. _ _
The principles of the off-diagonal update are the follow- (A 2 W(x,) (ACO)w, (1
i

ing. One of then vertices is chosen at random and one of its
four legs is randomly selected as the entrance leg. The spin
of the entrance leg is flipped. One of the legs of the operatowhere the weight functiong/(x;) andA(x;) depend on the

is chosen as the exit leg, and its state is also changed. Thwnfigurationx;. When the coordinates, are sampled ac-
exit leg is chosen with a probability calculated from the cording to relative weight, the expectation value is given by
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the average value &%(x) as indicated in the last part of Eq. of loops in the system is given by, , there are Dt con-
(12). The sign problem appears if the weight function is notfigurations that can be reached by flipping the loops, since all
positive definite. In this case, the sampling can be done usinthe loops can be in two states. The expectation value in Eq.

the absolute value of the weight, (12) can therefore be rewritten as
(As)|w| ((A)S(X))) i
A=~ 12 = W RA//IW
A S (2 A= 0w 19

wheres denotes the sign of the weight function and equalsyhere the double expectation brackets denote an average
=1. However, in many cases of physical interest, the averover the different loop configurations

age sign approaches zero exponentially as the system size is
increased. The above expectation value will then suffer from
very large statistical fluctuations since it becomes a ratio of ((SO)AMX)) ) jw = o~ > s(x)AX) . (17
two small numbers. Let us now consider how negative 27t 1=1 Wi

weight functions appear for quantum mechanical systems.

The weight functionW(«,S;) corresponding to the partition If certain criteria are fulfilled, the expectation value can

2N

function given by Eq(6) is be expressed as
"(L—n)! L (A= ((A(X) 8y, )W » (18)
W(a,a)=¥<a k]l Ha i a>. (13 o

whereny, is the number of merons. Therefore, only configu-

This is strictly positive, and for the ferromagnet there is norations without sign changing loops give nonzero contribu-

sign problem. Let us next consider an antiferromagnet. Ifions to the expectation value, and the sign problem is, in

this case, the diagonal and off-diagonal operators are of thgffect, solved. . ,
form Let us examine the necessary conditions for this to be the

case.

Hip= _Slz(b)sjz(b)+c (14) _(1) The lattice can be divided up into loops so that each

spin belongs to one and only one loop.
and (2) The weight must not change when the loops are
Lo o flipped.
Hap= = 2(Si0)Sjo) + Sio) Sj(n))- (15) (3) The loops must affect the sign independently.
o o . . (4) The zero-meron sector must be positive definite.

By adjusting the constan€, it is still possible to have (5) The expectation value of the operator is unchanged
(a|Hyp|la)=0. However, for the off-diagonal operator, the \\hen a loop is flipped.
expectation valuéa|H,y|@)<0, and the sign must be taken  ogether, these conditions place severe restrictions on
into account. If there is an odd number of off-diagonal op-yhich models can be studied with the meron solution. Our
erators in the configuration, the sign of the weight functiongjm, is to examine if the conditions can be relaxed to allow
will be negative. Due to the periodic boundary conditions infor 4 more general algorithm. Of the five conditions, the last
the imaginary time direction, the number of off-diagonal op-gne s the least severe. Many operators for which this condi-
erators on a square_lattlce is alwa_ys even and there is No Sigin does not hold can be expressed by introducing the two-
problem. However, if the system is frustrated, as on a trianmeron sectof8,11]. Examples of operators for which the last

gular lattice, the sign problem appears for the antiferromagggngition holds are the energy and heat capacity, which in
netic spin model. For a fermionic system, the anticommutagse are given by

tor rules must be taken into account and the sign of the

configuration changes sign every time two fermion world (n)

lines wrap around each other in imaginary time. We therefore E=- 7 (19
see that both for frustrated spin models and fermionic mod-

els, the sign problem enters into the loop update. Flipping a C=(n2)—(n)2—(n). (20)

loop can cause the number of spin flipping operators to

change parity, or it can cause two fermions to permute angyheren is the number of nonunit operators in the operator
thereby change the sign. Loops that cause the sign to changging.

are called meronf8], and in some cases one can, in effect,  The first three conditions are severe and we are not aware
solve the sign problem by avoiding configurations that in-of 4 way to relax these restrictions. In this study, we examine
clude merons. the case when the fourth condition is not met, and the zero-

In order to explain the meron solution, we need to revisitmeron sector is not positive definite. If this is not the case,
the loop update. As was pointed out at the end of the precedzq. (18) must be replaced by

ing section, it is sometimes possible to divide the lattice up

into a unique loop structure. Expectation values can then be ((A(X)S(X) n,, 0w
calculated using so-called improved estimators, which are = 5 , (21
averages over all possible loop configurations. If the number {{s(x) nM'0>>‘W‘
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wheres(x) is the sign of the configuration in the zero-meron bounce

A B C

sector. The higher meron sectors do not contribute to the
average and the sign problem is therefore reduced, but not é_é) d) d} (&Q) @}ﬁ)
eliminated. To find out how the average sign changes by
leaving out the nonzero meron sectors is the aim of this
investigation. It is not clear whether the exponential charac- CP_? ﬁ
ter of the sign problem will change, or how the system size
will affect the average sign. This depends on the relative FIG. 2. The three different ways the legs of a vertex can be
weight of the different meron sectors and on the average sigpaired together, if the bounce process is neglected, are marked by
in the zero-meron sector. letters A, B, andC. The fourth vertex shows one example of the

In order to investigate systems where the fourth conditiormany possible ways to connect the legs if the bounce is allowed.
does not hold, it is necessary to satisfy the first three criteria.
As was stated at the end of Sec. Il, there are a few speciddwed to introduce such auxiliary variables if the sum over
cases where a unique loop structure exists, and in these cagaxiliary variables reduces to the original weight:
the first condition is automatically satisfied. For more general
m_odgls, where one can choose betwee_n different exit legs, S Ws,iLj)=W,. 23)
this is not true, since there no longer existsraqueway to ]
divide the lattice into loops. It is, however, possible to cover
the lattice with loops so that each spin belongs to one andlVe furthermore require that the weight in this extended
only one loop. This can be done by always choosing an exispace is not affected by flipping a loop, which translates to
leg that is not already a part of any loop. Since a unique loop o o
structure does not exist, one also has to sample all possible W(s,i,j)=W(s",],i). (29)

loop configurations, and in order to implement the meron L L )
solution efficiently, this has to be done without leaving the©onsidering the criteria for detailed balance, E22), we
5Ean now relate the weights in the original and extended space

zero and two-meron sectors. We have implemented a loo
update that inherently divides the lattice into separate loop S
This can be done as long as the bounce process, where the
entrance and exit legs coincide, can be neglected. With the
advent of directed loop$], now there exists a way to elimi-  \yg have therefore shown that the total weight in our ex-
nate the bounce process in many models of interest. In theynqed configuration space is unchanged when flipping a
following section, we will introduce the idea of directed |50y and the second condition for using the meron solution
loops and introduce models where the first three, but not thg therefore fulfilled. The method of directed loops is a way
fourth, conditions are satisfied. to assign probabilities to the different possible exit legs given
an entrance leg. The probabilities are determined by solving
IV. SSE LOOP CONSTRUCTION the system of equations that Eq82) and(24) generate. We
_ . _ want to emphasis that for many models, it is possible to
Following Ref. [6], we here derive the directed 100ps gp|ye the equations so that the bounce process is forbidden
equations that enable us to neglect the bounce process, am and as we now show, this makes it possible to divide up
explicitly show that the weight in the extended space of di-he |attice into separate loops.
rected loops is unaltered when a loop is flipped. Then, we  Neyt we describe a procedure that enables us to make this
will describe a modification to the SSE loop update, andyyision. In our update, the physical structure of the loops is
demonstrate how the meron approach can be efficientlyetermined and updated during the diagonal move, while
implemented also for models where there is not a uniqu@ach |oop is flipped with probability one half in the off-
way of dividing the lattice into loops. ___diagonal update. The diagonal move is quite different from
By considering that each possible loop has a “time-ihe one described in Sec. II, and here we describe it in some
reversed” counterpart, it was show6] that a loop move  yatqil.

satisfies detailed balance if, for every vertex that the loop e operator string is, as before, updated sequentially, and

W(s,e,x)=WsP(s,e,x). (25)

passes through, if a unit operator is encountered, an attempt to insert a diag-
o L onal operator is made. If an operator is inserted, its four legs
WsP(s,i—j)=WsP(s',j—1), (22 are linked to the existing loops. If the bounce is eliminated,

there are three possible ways to link the entrance and exit
where the vertex weightVs for a given spin configuratios  legs of a vertex, see Fig. 2. The decision of which configu-
is defined by Eq.9) and P(s,i—j) is the probability to ration to use is based on detailed balance equations, which
choose exit leg given entrance leg for a given spin con- states that the probability of different vertices is proportional
figurations. to their weight given by Eq(9). It is enough to treat an
The main idea of the method of directed loops is to attactarbitrary leg as “entrance leg” to the vertex and determine an
weight also to the link that connects the entrance and exiéxit leg. With two legs connected together in this manner, the
spins at a traversed vertex. The weight of a vertex in thiother two legs are also automatically linked. If instead a
extended space can then be writterVés,i,j). We are al- diagonal operator is encountered, an attempt is made to ex-
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? <:> ( FIG. 4. A three-spin configuration with negative weight but no
merons. The diamondgircles represent spin ugdown).

FIG. 3. A example of a SSE configuration divided up into sepa-

rate loops is depicted on the left side. In the right part of the ﬁg“rediagonal operators to change the parity, the sign changes and
a possible outcome after a sequential diagonal update is shown. O'Pﬁe loop is a meron. The only way this can happen is if the
operator has been inserted and the way the legs are connected tr Bp traverses an odd number of vertices. The number of
bgen cha_mged for two of the vertices. These operators are mark% nsversed vertices is independent of any other loops and it
with & thick bar. is therefore clear that the loops are independent in their effect
n the sign, which establishes the third criterion. We have
erefore shown that the first three criteria for the application
the meron solution are fulfilled.

The fourth criterion requires that the zero-meron sector
. . . has a positive definite weight. This is not, in general, true for
is determined for an arbitrary “entrance leg,” a procedurethis model. The configuration shown in Fig. 4 has negative

which may change the existing links. This change of IOOpweight, yet the only loop in the system is not a meron. The

structure is also done if an off-diagonal operator is encounbnly point where the fourth criterion holds true is far=

tered. We graphically demonstrate this modified update '”—1, a point in parameter space which has been extensively

Fig..3.. On t.he left side of Fig. 3 aterm in the SSE expanSio'Etudied[ll]. At this point, it is possible to exclude all but one
is divided into loops. A possible outcome after a dlagonalupdate update€ in Fig. 2. As we move away fromh =

:ng;/teir:issssggvar;eoghrﬁor:jger;g ![rr]\atl?ilchffflleorV\fllggnS;\CetI?s?g\:]vep\rAgltl)-_ 1, the negative part of the zero-meron sector grows. At the
lem other extrgme,Alz 1, it is not possmle_ _to eliminate the.
' bounces without introducing a nonergodicity. If the bounce is
eliminated, the only allowed update is updaten Fig. 2.
V. MODELS With only this update, there are no loops which pass through
an odd number of operators, and thus there are no merons.
Still the zero-meron sector, the only sector left, contains both

The main focus of this paper is frustrated spin systemspositive and negative parts, but there is no way to switch

AN aNalilal Fa)
/\If‘\ Y M
Ty O I

)
D
D
D
D

N
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change it for a unit operator, as in the standard diagon
update. If the removal is not accepted, an attempt is made 10
alter the way in which the legs are connected. In the same
way as when inserting a new diagonal operator, an “exit leg”

A. Frustrated spin

The HamiltonianH is given by between them, and therefore the whole SSE space is not
sampled. For all other valued,e{—1,1}, the meron solu-
H=S AS’S*+ E(S*S-’JrS-*S’) (26) tion can be applied, and this model constitutes an ideal test-
o o2 ing ground for a further study of the meron solution since, by

adjusting a single parameter, we can move from a point
where the sum runs over all nearest neighbors. Bor Where the meron solution eliminates the sign problea-=(
e{—1,1}, the directed loops equations can be solved so that 1) to a point where the loop update becomes nonergodic
the bounce is eliminated, and using the method described itA=+1). However, since much effort has been made to
the preceding section, the first two criteria for using thesolve the sign problem in fermion models, we will next de-
meron solution are fulfilled. The frustration is introduced by scribe the application to a system of spinless fermions.
having spins positioned on a triangular lattice. The off-
diagonal coupling is antiferromagnetic and as described pre-
viously the number of off-diagonal operators may be odd on
a frustrated lattice and there is therefore a sign problem. In Besides the frustrated spin systems, we have also studied
Fig. 4, an example of such a configuration with an odd humspinless fermions on a square lattice. In this context, a meron
ber of off-diagonal operators is shown. The third criterionis a loop which permutes an even number of fermions when
states that the loops need to be independent in their effect atis flipped. The loops must affect the sign independently of
the sign. If flipping a loop causes the total number of off-each other for the meron method to work, as stated by the

B. Spinless fermions
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third constraint described in Sec. lll. For the frustrated spin 10°
models described above, this was always the case, but it is
not so for fermionic models. As discussed previously, there
are three different ways to traverse a vertex; see Fig. 2. For
fermions, updat€ makes the loops dependent on each other
[9]. To solve this problem, one can give the completely
empty vertex a negative weight, but in this case update A 107
causes the loops to be dependent. We are not aware of a way
to solve this dependency problem and one is thus restricted
to models where one of the two updatBsand C can be
forbidden.

In the work by Chandrasekharan al [9], two models are
given where only one type of vertex update is allowed and 107
the zero-meron sector, therefore, is positive. We have studied
a model where it is possible to exclude upd&end the 0 10 20 30 40
bounce, but both updatd and C must be allowed. The B
Hamiltonian for this model is

P 4 1 FIG. 6. The average sign for different system sizes calculated
H= 2 CiCj +¢y¢ + §(ni —1/2)(n;—1/2)— §(ni +n)), for A=—0.9. The averages are calculated for the zero-meron sector
b 27) (diamonds and include the two-meron sectgircles.

frustrated spin models with different values of the constant
ordinary annihilatior(creatior) fermion operators. By adjust- A. The expectation value for a three-site system is shown as

ing the constantC added to the diagonal operator, the emptya :rl:]n??: tﬁf t(;rr:per?]grtsvlnr:lgr. r? Thte rS|murI13tlo)r(1 'S tp?ir_n
vertex is given a negative weight and the loops are indeper{pI N eh €ro 2 th i O'I ; 0 Seg ° s,lad. N tﬁecta N
dent of each other. Therefore we have a fermionic exampl¥a ues are shown both Iincluding and excluding the two-

of a model where the first three criteria for using the meror"€ron Sector. As can be seen in the figure, the sign decreases
solution are fulfilled, but the zero-meron sector is not posi-xPonentially in both cases. Asymptotically, it appears that

tive definite. In the following section, we analyze how the the sign in the zero-meron sector is increased by a constant
meron solution affects the average sign in these cases whel@ctor as compared to the case of including the two-meron

the zero-meron sector is not positive definite. sector. The average sign is greatest close to the point
—1, where the sign problem is eliminated, and it decreases

as the poinA =1 is approached. This is to be expected since
VI. RESULTS the meron-cluster solution cannot be applied in the present

. . . . form at the Heisenberg poinA=1).
First we consider the spin mod.el described by E@)- We have also calculated how the expectation value of the
We have calculated the expectation value of the sign for.,

sign changes with the system size. The results are shown in
Fig. 6. In this calculationA=—0.9 is used. The average

wheren; is the occupation on siteandc; (c;") are the

10° . | sign appears to decrease approximately exponentially also
—-—- A=09 with system size.
---------------- A=—08
- A=0 -
— A=09 3335 B= 0 meron
N 2 2 merons
. o I >2 merons
@ 10 S e :
o ol =Z
= =
S
. © > =B
. e Z
0 10 2BO 30 40 B=1 B=5 B=10

FIG. 7. The weight distribution between the sectors with differ-
FIG. 5. The average sign for different values/offor the frus-  ent numbers of merons at different temperatures for a system with
trated spin model. The averages are calculated for the zero-merdan spins. The points abovkelow) the line in the figure correspond
sector(diamond$ and include the two-meron sect(ircles. to a positive(negative sign.
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10° . . B3 0 meron
- g 1 meron
2= 2 merons
2= O >2 merons
S i3
A 107 ¢ 1 = —1 : T
v -
B=0.25 B=0.5 B=0.85
107 | ] FIG. 9. The weight distribution between the sectors with differ-
ent number of merons at different temperatures for a system with 16

sites is presented. The points ababelow) the line in the figure
correspond to a positivenegative sign.

, i We have studied the relative weight of the sectors with
o e et ot Aferent numiber of merons clso for the ermioric sytem
) ' ; For the fermions, there are configurations with only one
tor (diamond$ and include the one- and two-meron sectors L 7
(circles. meron. Th|s |s_due to the_ fag:t that the empty vertex is given
a negative weight, and flipping all the loops in a configura-
Besides the two already mentioned expectation values dfon may change the parity of the number of empty vertices.
the sign, we have also calculated the expectation value of th® comparison with exact diagonalization indicates that one
sign without the use of merons. This value is slightly smalleronly needs to include either the one-meron or the two-meron
than the one for the two-meron sector. The difference isectors in addition to the zero-meron sector. In Fig. 9, the
small since the sector with two merons has a very muchielative weight for the zero-, one-, two-, and higher-merons
larger weight than the sectors with more than two merons, a8ectors are presented. At high temperatures, the relative
least for the temperatures and system sizes that we have stugeight of the zero-meron sector again dominates, while at
ied. In Fig. 7, we show the relative weight for the zero-lower temperatures the weight in the higher-meron sectors
meron, the two-meron sector, and the sectors with more thaificreases.
two merons, calculated for a system with ten spins at differ-
ent temperatures. The weight of the sectors with more than
two merons increases with a decreased temperature as a con- VIl. SUMMARY AND DISCUSSION
sequence of a larger configuration which results in a larger

. L ; We have shown that as long as it is possible to divide the
number of loops. In the figure, we also indicate the relatio g P

o ) . ystem into independent loops, the meron-cluster approach
b_etween the number of positive anql negative values In thgan be used to decrease the sign problem even when the
different sectors. For the sectors with merons, there is, by o meron sector is not positive definite. We have applied

ieﬂmuotr:, an eqliaé ?moulr;t of5ptohsmvet_an<}i neg_?tlvet Values‘this method to both frustrated spin systems and spinless fer-
S can be expected from Fig. 5, the ralio of positive 10 Negayiq g An intermediate regime, between a point in parameter

:'Ve We'%][ht mdthe zero-mvt?/ronlsectotr atrr)]prtot?fhesl ct)ne as &) ace where the meron-cluster algorithm eliminates the sign
emperature decreases. Ve aiso note that the relative WeIgi, e m and a point where it cannot be applied, is studied. In

,?f the zef[ro-me[lt_)# sector decrezises qtl;]'te rapl(;j(ljy W|thblowe is intermediate regime the exponential character of the sign
empera lljfretf]' ere 1 noh sec ortW| ar}. 0 t.num er ? roblem persists, but one can increase the average sign by a
merons. ere weré such a sector, configurations wWoulQ,nsiant factor by limiting measurements to the zero-meron

er>1<ist in Vthil(.:h a}ﬂilftﬁf ?” the loops WOléIdtresulthin a si%n | ector. The method is probably of most practical use in the
change. A Tlip of all the loops corresponds 1o a change of a icinity of points where the sign problem can be eliminated

spin states, an operation which does not change the numbﬁging the meron solution. In a large scale application, the

of off-diagonal operators. - . . weight of the two-meron sector should be decreased by a
We have alsol done a similar calculation for the SF)”ﬁ'lesﬁeweighting techniqugB,11] to obtain better statistics. To be
fermon model given by'Eq(27). The rgsult for the EXPEC- aple to use this algorithm, we have combined stochastic se-

tation value of the sign is shown in Fig. 8 as a function ofrieS expansion with the concept of directed loops.
temperature. Two different system sizes are studied, two

times two and four times four sites. Also here the average

sign appears to decrease exponentially with inverse tempera- ACKNOWLEDGMENTS
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